

Nombre de la asignatura (Subject name)

Nanomateriales

Nanomaterials

Duración

Primer semestre

Créditos ECTS / Carácter

- 6 / Obligatoria en el Módulo 2 ("Especialización") dentro de la Materia 2.1 ("Nanociencia y Nanomateriales")
 - 6 / Optativa en el Módulo 2 ("Especialización") dentro de la Materia 2.2 ("Ciencia y Tecnología de Materiales")

Contenidos básicos (Subject knowledge)

Efectos de tamaño en las propiedades de los materiales. Síntesis y organización de nanopartículas. Propiedades de los nanomateriales. Materiales nanoporosos y técnicas de caracterización tales como: microscopia de barrido y de transmisión, microscopia de efecto túnel, microscopia de fuerzas atómicas, difracción de rayos X, electrones y neutrones

Size effects on the materials properties. Synthesis and organization of nanoparticles. Properties of nanomaterials. Mesoporous materials. Characterization techniques.

Profesores y ubicación

Profesor	Regino Sáez Puche
Departamento	Química Inorgánica I
Correo electrónico	rsp92@quim.ucm.es

Profesora	Mª José Torralvo Fernández		
Departamento	Química Inorgánica I		
Correo electrónico	torralvo@quim.ucm.es		

Profesora	Luisa Ruiz González	
Departamento	Química Inorgánica I	
Correo electrónico	luisarg@quim.ucm.es	

Profesor	Rodrigo González Prieto	
Departamento	Química Inorgánica I	
Correo electrónico	rgprieto@quim.ucm.es	

Profesor	Miguel Manzano García	
Departamento	Química Inorgánica y Bioinorgánica	
Correo electrónico	mmanzano@ucm.es	

Objetivos y competencias (Abilities and Skills)

OBJETIVOS

- 1.- Proporcionar una base sólida y equilibrada de conocimientos en nanomateriales.
- 2.- Desarrollar capacidades para aplicar los conocimientos, tanto teóricos como prácticos, a la resolución de problemas en entornos nuevos o dentro de contextos poco conocidos tanto químicos como multidisciplinares.
- 3.- Desarrollar capacidades que le permitan comunicar sus conclusiones, conocimientos y razonamientos sobre nanomateriales, tanto a audiencias especializadas como no especializadas de una forma clara y sin ambigüedades.
- 4.- Desarrollar herramientas de aprendizaje, mediante la educación en ciencia y tecnología químicas, que permitan a los estudiantes continuar su formación de un modo autodirigido o autónomo.
- 5.- Generar en el estudiante el interés por la investigación científica.

ABILITIES

- 1. To give the appropriate basis of knowledge on nanomaterials.
- 2. To develop theoretical and practical abilities to solve scientific problems in new fields of chemistry or multidisciplinary areas.
- 3. To develop abilities for communicating their knowledge and conclusions on nanomaterials.
- 4. To develop learning tools that allow the students follow the formation in an autonomous manner.
- *5. To induce the interest for the research.*

COMPETENCIAS GENERALES

- CG1.- Integrar conocimientos y enfrentarse a la complejidad de problemas en el área de nanomateriales.
- CG2.- Desarrollar habilidades teórico-prácticas para resolver problemas de interés científico dentro del campo de los nanomateriales.
- CG3.- Interpretar y analizar datos complejos que contribuyan al conocimiento de los nanomateriales.
- CG4.- Reconocer y evaluar la calidad de los resultados teóricos y prácticos utilizando las herramientas adecuadas.
- CG5.- Utilizar y reconocer la tecnología de los nanomateriales para poder resolver problemas en el entorno de los mismos.

- CG6.- Conocer y comprender los fundamentos científicos de los nanomateriales y sus interrelaciones entre estructura, propiedades y aplicaciones.
- CG7.- Correlacionar la composición de los nanomateriales con su estructura y propiedades, relacionando las propiedades macroscópicas con el tamaño de partícula.
- CG8.- Aplicar las técnicas comunes de caracterización de partículas de tamaño nanométrico.
- CG9.- Reconocer la importancia y utilidad de los nanomateriales en diversos campos.
- CG10.- Describir los procesos en que se basan algunos usos de los nanomateriales.

GENERAL SKILLS

- GS1.- To integrate knowledge on nanomaterials and to face up the complexity of questions in this area.
- GS2.- To develop capabilities on theory and practice to solve scientific questions on nanomaterials.
- GS3.- To analyse complex data contributing for the knowledge of nanomaterials.
- GS4.- To recognize and evaluate the quality of the results by using the appropriate tools.
- GS5.- To use and recognize the technology of nanomaterials in order to solve scientific problems in the area.
- GS6.- To understand the scientific basis of the nanomaterials and their structure properties applications relationships.
- GS7.- To correlate the composition of the nanomaterials with their structure and properties by relating the macroscopic properties with the particle size.
- GS8.- To apply the common techniques of characterization of nanometric size particles.
- GS9.- To recognize the importance and use of the nanomaterials in different areas.
- GS10.- To describe the processes in which some uses of the nanomaterials are based.

COMPETENCIAS ESPECÍFICAS

- CE2.- Planificar la experimentación de acuerdo a modelos teóricos o experimentales establecidos para los nanomateriales.
- CE4.- Desarrollar habilidades teórico-prácticas para la caracterización y análisis de nanomateriales.
- CE8.- Seleccionar y utilizar los distintos procedimientos de obtención de nanomateriales.
- CE9.- Discutir e investigar la influencia de la microestructura en las propiedades de los materiales, y relacionarla con leyes físicas adecuadas.
- CE10.- Utilizar técnicas de diseño y autoorganización de nanomateriales para preparar nanoestructuras con propiedades de interés tecnológico.
- CE11.- Identificar las funcionalidades de los nanomateriales, así como su desarrollo orientado hacia potenciales aplicaciones.

CE12.- Diseñar estructuras químicas de nanopartículas adecuadas para su utilización en un ámbito determinado, y conocer las estrategias para su síntesis.

SPECIFIC SKILLS

- SS2.- To design the research according to theoretical or experimental models established for nanomaterials.
- SS4.- To develop theoretical and practical abilities for the characterization and analysis of nanomaterials.
- *SS8.- To select and use the procedures to get nanomaterials.*
- SS9.- To discuss and investigate the influence of the microstructure in the properties of the materials, and relate to physical laws.
- SS10.- To use the design and autoorganization techniques of nanomaterials in order to prepare nanostructures with interesting properties.
- SS11.- To identify the functionalities of the nanomaterials and their development to potential applications.
- SS12.- To design chemical structures of nanoparticles for their use in determining areas, and also to know the strategies for their synthesis.

COMPETENCIAS TRANVERSALES

- CT1.- Elaborar, escribir y defender informes de carácter científico y técnico.
- CT2.- Trabajar en equipo.
- CT3.- Valorar la importancia de la sostenibilidad y el respeto al medio ambiente.
- CT4.- Demostrar capacidad de autoaprendizaje.
- CT5.- Demostrar compromiso ético.
- CT6.- Comunicar resultados de forma oral/escrita.
- CT8.- Demostrar motivación por la investigación científica.

GENERIC COMPETENCES

- *GC1.-* To elaborate, write and defend scientific and technical reports.
- GC2.- To work in multidisciplinary team.
- GC3.- To understand the importance of respecting and preserving the environment.
- *GC4.-* To demonstrate the ability to learn independently.
- GC5.- To show ethical commitment.
- GC6.- To communicate results orally or in writing.
- GC8.- To show motivation for scientific research.

Resultados de aprendizaje (Learning outcomes)

Al final de la asignatura el alumno debe ser capaz de:

- Seleccionar, optimizar y planificar procedimientos para la obtención de nanomateriales.
- O Diseñar métodos que permitan la autoorganización de nanoelementos para preparar nanoestructuras.
- Seleccionar la técnica o técnicas de caracterización más adecuadas para el estudio del tamaño, morfología, microestructura y composición de nanomateriales.

- Explicar los avances más recientes en las técnicas de difracción de rayos-X y microscopia para la caracterización de nanomateriales.
- o Reconocer la influencia del tamaño de partícula en las propiedades.
- o Describir los fundamentos científicos que permiten entender relaciones entre la estructura/nanoestructura propiedades y aplicaciones.
- Seleccionar sistemas candidatos como conductores moleculares.
- Elucidar rutas sintéticas de materiales híbridos orgánico-inorgánicos para obtener diferentes propiedades en el producto final: comportamiento mecánico, hidrofobicidad, permeabilidad a los gases, etc.
- Diseñar estrategias y condiciones de síntesis de distintos materiales mesoporosos.

At the end of this subject, the students will be able of:

- Choosing, optimizing and scheduling the synthetics routes for the preparation of nanomaterials.
- Designing methods for the nanoelements self-assembly for nanostructures preparation.
- O Selecting the appropriate characterization techniques for determining the size, morphology microstructure and composition of nanomaterials.
- Explaining the most recent advances of the X-ray and microscopy techniques for the nanomaterials characterization.
- Understanding the influence of the particle size on the properties
- O Describing the responsible scientific fundaments for establishing the structure-nanostructure, properties and applications relationship.
- o Selecting potential systems as molecular conductors.
- Elucidating synthetic routes for organic-inorganic hybrids materials to obtain different properties in the final product: mechanical behavior, hydrophobicity, gas permeability, etc.
- Designing strategies and synthesis conditions for preparing different mesoporous materials.

Contextualización en el Máster

La asignatura 2.1.1. "Nanomateriales" se oferta dentro del módulo 2 "Especialización", y forma parte de dos de los cuatro itinerarios de dicho módulo. Presenta un carácter obligatorio dentro de la materia 2.1 "Nanociencia y Nanomateriales", mientras que es optativa en la materia 2.2 "Ciencia y Tecnología de Materiales".

Se contempla analizar los efectos que produce el tamaño en las propiedades de los materiales, así como estudiar diferentes métodos de síntesis y de organización de las nanopartículas. Se describen diferentes técnicas de caracterización de nanomateriales. Finalmente se amplía el estudio a nuevos sistemas con distintas aplicaciones, incluyendo propiedades electrónicas.

Esta asignatura ofrece una visión complementaria a la asignatura de "Nanoquímica", por lo que ambas asignaturas se ofertan como obligatorias en la materia 2.1.

Programa de la asignatura

Bloque I. Introducción

Aspectos generales. Nanociencia y nanotecnología. Herramientas para la nanofabricación.

Bloque II. Diseño y preparación de nanomateriales

Clusters, nanopartículas, nanohilos, nanotubos, otras nanoformas.

Bloque III. Caracterización de nanomateriales

Técnicas difractométricas.

Microscopia de campo cercano (AFM, STM).

Bloque IV. Propiedades de nanomateriales

Efectos del tamaño. Efectos de superficie.

Propiedades eléctricas. Propiedades ópticas: confinamiento cuántico. Propiedades magnéticas: superparamagnetismo. Aplicaciones.

Bloque V. Sólidos mesoporosos. Materiales híbridos

Estucturas mesoporosas. Aplicaciones tecnológicas. Materiales mesoporosos en biomedicina.

Nanomateriales híbridos: nanopartículas funcionalizadas. Principales aplicaciones tecnológicas y en biomedicina.

Bloque VI. Nuevos sistemas de utilidad en nanoelectrónica: nanohilos moleculares

Nanohilos moleculares. Nanocontactos metálicos.

Metodología y programación docente

La práctica docente seguirá una metodología mixta basada en el aprendizaje cooperativo, el aprendizaje colaborativo y el autoaprendizaje. Esta metodología se desarrollará a través de clases teóricas mediante exposiciones magistrales (3,6 ECTS; CG1, CG3, CG5, CG6, CG7, CG8, CG9, CG10, CE2, CE8, CE9, CE10, CE11, CE12, CT3, CT5), y clases de seminarios (1,8 ECTS; CG1, CG2, CG3, CG4, CG5, CG6, CG7, CG8, CG9, CG10, CE2, CE4, CE8, CE9, CE10, CE11, CE12, CT3, CT4, CT5) en las que se plantearán ejercicios relacionados con las identificación de las propiedades de los diferentes materiales y su aplicación. Como apoyo a las explicaciones teóricas y seminarios, se proporcionará a los alumnos el material docente apropiado a través del Campus Virtual, en inglés o en español dependiendo de la fuente de procedencia.

Se realizarán también tutorías dirigidas (0,2 ECTS; CG1, CG2, CG3, CG4, CE2, CE4, CE8, CE9, CE10, CE11, CE12, CT2, CT4, CT5, CT6) sobre cuestiones relacionadas con el temario de la asignatura. Ellas servirán para conocer las capacidades de los alumnos en la adquisición de conocimientos y competencias de la materia.

Además los alumnos elaborarán trabajos individuales o en grupo relacionados con los contenidos de la asignatura. Ello permitirá que los estudiantes pongan en práctica sus capacidades en la obtención de información, empleando la

bibliografía o recursos adecuados. También podrán asistir a aquellas conferencias, recomendadas por la Comisión de Coordinación del Máster, cuyo perfil sea más adecuado a los contenidos de cada materia. Estas actividades, junto con los exámenes orales o escritos, supondrán 0,4 ECTS (CG1, CG6, CG7, CE11, CT1, CT2, CT3, CT4, CT5, CT6, CT8).

PROGRAMACION DOCENTE

Actividad	Presencial (hrs)	Trabajo autónomo (hrs)	Créditos ECTS (horas)
Teoría / Theory classes	36,0	54,0	3,6 (90,0)
Seminarios / Seminars	18,0	27,0	1,8 (45,0)
Tutorías/ Tutorials	2,0	3,0	0,2 (5,0)
Preparación de trabajos, conferencias y exámenes / Works preparation, conferences and exams	4,0	6,0	0,4 (10,0)
Total	60,0	90,0	6 (150)

Evaluación del aprendizaje

El rendimiento académico del estudiante se computará atendiendo a la calificación del examen final y la evaluación del trabajo personal en los siguientes porcentajes:

- Examen escrito u oral: 30 %

Se realizará un único examen al finalizar la asignatura. Será necesario obtener una puntuación mínima de 4,0 en el examen final para acceder a la calificación global de la asignatura.

- Trabajo personal: 60 %

La evaluación del trabajo individual del alumno se llevará a cabo teniendo en cuenta su destreza en la resolución de diferentes cuestiones planteadas. Además se valorarán los trabajos, individuales o en grupo, que se realicen, teniendo en cuenta tanto el conjunto del trabajo como la claridad de la presentación.

Participación en tutorías y asistencia a conferencias: 10 %
Se valorará la capacidad y actitud que demuestre en las actividades planteadas.

Para poder ser evaluado, el estudiante deberá haber participado, al menos, en el 70% de las actividades presenciales.

Las calificaciones estarán basadas en la puntuación absoluta sobre 10 puntos y de acuerdo con la escala establecida en el RD 1125/2003.

Idioma o idiomas en que se imparte

Español

Bibliografía y recursos complementarios

- Adachi, M.; Lockwood, D. J.: "Self-Organized Nanoscale Materials", Springer, 2006.
- Bruce, D. W.; O'Hare, D.; Walton, R.: "Low-Dimensional Solids", Inorganic Materials Series, Wiley-Blackwell, 2010.
- Cao, G.: "Nanostructures and Nanomaterials. Synthesis, Properties and Applications", Imperial College Press, 2004.
- cullity, B. D.: "Introduction to Magnetic Materials", Addison-Wesley, 1972.
- Liu, G.; Chen, X.: "Spectroscopy Properties of Lanthanides in Nanomaterials", Handbook on the Physics and Chemistry of Rare Earths, Vol. 37, Editors Gschneider, K. A.; Bunzli, J. C.; Pecharsky, V. K., Elsevier, 2007.
- Ozin, G. A.; Arsenault, A. C.; Cademartiri, L.: "Nanochemistry: A Chemical Approach to Nanomaterials", 2ª Ed., RSC Publishing, 2009.
- Rao, C. N. R.; Müller, A.; Cheetham, A. K.: "Nanomaterials Chemistry: Recent Developments and New Directions", Wiley-VCH, 2007.
- Rao, C. N. R.; Müller, A.; Cheetham, A. K.: "The Chemistry of Nanomaterials. Synthesis, Properties and Applications", Vols. 1 y 2, Wiley-VCH, 2004.
- Schmid, G. (Ed.): "Nanoparticles. From the Theory to Application", 2^a Ed., Wiley-VCH, 2005.
- Vollath, D.: "Nanomaterials. An Introduction to Synthesis, Properties and Applications", Wiley-VCH, 2008.
- Wang, Z. L. (Ed.): "Characterization of Nanophase Materials", Wiley-VCH, 2000.